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Synthetic Data - Introduction
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What is synthetic data?

* Definition: "Data applicable to a given situation that are not
obtained by direct measurement”
(Source: https://en.wikipedia.org/wiki/Synthetic data)

* Synthetic data ...

— is often explained through it's creation process (generation)

— is a broader term for narrower terms like anonymized, artificial and
fully/pure synthetic data (see later) —

— sometimes also defined a subset of anonymized data
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What is synthetic data?

e Synthetic Data tries to

— preserve the overall properties and
characteristics of the original data

— without revealing information about actual
individual data samples

e (QOther statement:

— "Balancing privacy and the demand for data
availability" (Practical Synthetic Data Generation
(2020), Emam, Mosquera & Hoptroff, O'Reilly)
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Why synthetic data?

* Real data might have gaps and structural mismatches
(compared to data that will be processed later)

e Access to real data might be restricted
* Real data might be subject to privacy
* Real data might be non-existent
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Applications of synthetic data

* Model training
(machine learning, Al)

* Data anonymization
(open data publishing)

* Software testing for reliability or scalability
(SW development, SW engineering)

 Database performance optimization
(data engineering)
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Synthetic Data: Companies and industries

* Some industries (no claim to be complete):
— Medicine
— Government
— Computer Science and Data Science, etc. ...

* Some companies (no claim to be complete):
— MOSTLY Al, Wien AT, https://mostly.ai
— Synthesized, London UK, www.synthesized.io
— Gretel.ai, San Diego USA, https://gretel.ai
— Datacebo, Boston USA, https://datacebo.com/
— Syntheticus.ai, Zirich CH, https://syntheticus.ai
— itopia AG, Zurich CH, www.itopia.ch/en/key-issues/synthetic-data/
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Factsheet

iISynth

Efficient generation of customized, complex and consistent synthetic data

corporate information technology

It is often not possible or permissible to use production data, anonymized or otherwise, for test purposes and doing
so can lead to unwanted side effects.

Synthetic data is the alternative. Until now, however, creating synthetic data has been too complex, of insufficient
quality and, often, simply not practicable.

iSynth enables you to create synthetic data efficiently and cost-effectively.

Key Features

Support of all test levels: iSynth can
supply synthetic data for all test
levels. From unit tests to fully integra-
ted system tests on large system
landscapes. iSynth's synthetic data
can be used as primary data or to
complement existing data and is
suitable for generating both concise
and large test data sets.

Flexible and extensible: iSynth is
easy to adapt and extend accurdlng to

e
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Challenges

Regulatory requirements: Requirements for handling private, health and bank
data are becoming increasingly restrictive. In the age of big data analytics,
solutions based on data anonymization will most likely fail to meet the
requirements in terms of data and confidentiality protection.

Agile projects and DevOps testing: In addition to appropriate development
methods and tools, frameworks, service simulators and test utilities, it is
essential to have the right amount of consistent, high-guality test data in order to
perform meaningful tests.

External sourcing: Software components are often developed by external
partners. Whether these partners are active onshore, nearshore or offshore is
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Use Case of a point
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Methods for generating synthetic data

Statistical methods:
— Mathematical models to generate data that have the same statistical properties as real data.
— Frequency distribution classification, Monte Carlo simulation, Gaussian mixture modeling, Markov chain.

*  Rule-based methods:
— Define rules or constraints that generate synthetic data.
— Arule might be that a zip code must match the corresponding city.
* Data augmentation methods:
— This involves adding noise, perturbations, or transformations to real data to create new, synthetic data.
—  Fuzzification, Differential Privacy.

. Database methods:

— A database management system is used to generate synthetic data. Databases in turn use statistical and
rule-based methods (functional dependency). Random number generators.

*  Machine learning methods:
— Training ML models on real data and then using these to generate synthetic data w/ similar characteristics.
— Generative adversarial network (GAN) to generate new images that are similar
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Types of synthetic data (1 of 3)

* Fully synthetic data:
— completely artificially generated
— doesn't contain original data

e Partially synthetic data:

— only values of the selected sensitive attribute are replaced with synthetic
data

e Hybrid synthetic data:
— generated using both original and synthetic data

(Source: Surendra & Mohan, 2017)
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Types of synthetic data (2 of 3)

e Synthesized Ltd. (2018) defined following computer-
supported data generation types:

 Anonymized data, produced by a 1-to-1 transformation from
original data. Examples include noise obfuscation, masking, or
encryption

* Artificial data, produced by an explicit probabilistic model via
data sampling

* Synthetic data, produced by a model (configuration, rules)
which in turn can be learned by statistics from original data
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Types of synthetic data (3 of 3)

Original Data

1 Anonymised Data

Z Artificial Data

3 Synthetic Data
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account_id | trans_id Name type amount balance

5132412 2451 RM“" 34 54565 | 2456.56
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513XXX 24XX X [30-40] 480.34 2300.56
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3253215 456 Jack Ma 33 558 2152

5453472 623 Hiko 34 603 27600
Brown




3.1 Anonymized data: Intro. g b g

* Anonymization

— Modification of personal such that the individual details of personal
circumstances can only be attributed to a natural person with a
disproportionate expense of resources

— Goal 1: Maximize accuracy of responses to queries to databases
— Goal 2: Minimize probability of identifying the records used to respond

* Quantification of anonymity:
— "Differential Privacy"

* Nice property: Applicable in realtime as part of queries as view on
tables with productive data
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3.1 Anonymized data cont.

(©

(0

* Approaches
— Add noise or dummy data (similar pseudo-random GPS noise)
— Aggregate data: classic approach, expose only sum of at least 3
— Suppress/delete or swap data: see Differential Privacy

* Differential privacy:

— Technique for ensuring that individual data points are protected when aggregate
information is shared by adding or deleting data (noise) up to a certain value of
parameter epsilon (g)

— Extension of K- and €-anonymization

* Tool:
— Differential Privacy by Google Repo; implements e.g. sum(), avg() etc.
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3.2 Artificial data generation @) -

(©

* A modelis created by hand

* which describes an observed behavior
* or by configuring statistic values

* (Agent-based modeling)
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3.3 Pure synthetic data generation
 Drawing model by example:

— Observing real statistical distributions of original data
— Manual configuration is optional

* Tools:
— pgsynthdata
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3.3 Pure synthetic data: Challenges

e Qutliers may be missing: Synthetic data can only mimic the real-
world data, it is not an exact replica of it. Outliers can be more
important than regular data points.

* Quality of the model depends on the data source: Quality of
synthetic data is highly correlated with the quality of the input data
and the data generation model. Synthetic data may reflect the
biases in source data.

e User acceptance: It's an emerging concept and may be new to users
* Synthetic data generation (still) requires time and effort.
(Adapted from: https://research.aimultiple.com/synthetic-data/ )
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Synthetic data: Statistical Evaluation

* How to generate test data that meet both requirements,
validity and representativeness, at the same time in a scalable

manner?

Validity
Exhaustive search Metaheuristic-search
- Constraint programming - Alternating Variable Method (AVM)
[Cabot et al., JSS 2014] [Ali et al., TSE 2013]
- Alloy [Ali et al., ESE 2016]

[Sen et al., ICMT 2019]

* Representativeness

Heuristics Sampling
- Rule-based - Boltzmann's random sampling (Source
[Hartmann et al., SmartGridComm 2014] | [Mougenot et al., ECMDA-FA 2009] https://Www.slideshare.net/briand Iionel/sv

- Model-based
[Soltana et al., SoSyM 2016]

nthetic-data-generation-for-statistical-testing
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Synthetic data: Statistical Evaluation cont.

* For each of the datasets, perform following steps:

— For each attribute, generate a histogram visualizing both the
distribution of the real and the synthetic data

— Compute the correlation coefficients and generate a heat map to
visualize dependencies between attributes

— Measure the distance between the real and the synthetic data via row-
by-row computations of nearest neighbors

(Hittmeir et al. 2019)
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Synthetic data: Statistical Evaluation cont.
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(Source: Hittmeir et al. 2019)
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Synthetic data: Experimental Evaluation

* Train various machine learning models
— with the original data w\ test set
— with synthesized data of same size

* Test them on the test set (taken from original data)
* Compare

(Hittmeir et al. 2019)
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Experimental Evaluation: Outlook

 Understand why synthetization works better on some dataset than
others
* Influence
— Generation method
— Differential privacy
— Level of differential privacy (g)

* Defining and quantifying the privacy levels and guarantees achieved
by synthetic data

(Hittmeir et al. 2019)
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Synthetic data generation tools

* Faker
— Package in Python that generates fake data, like "first names"
— MIT License
— https://faker.readthedocs.io/

e Synthetic Data Vault (SDV)

— Tools in Python to generate tabular synthetic data

— Business source lic. ("anti service" not 0SS), maintanied by Datacebo
https://docs.sdv.dev/sdv/

e others...?
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... generation tools for PostgreSQL

Tool PostgreSQL Anonymizer
— PostgreSQL license, Ruby, by Damien Clochard, Dalibo, Paris
— https://labs.dalibo.com/postgresgl anonymizer

Tool PGFaker
— MIT license, TypeScript, by Imanpal Singh, India
— Weiterentwicklung von pg-anonymizer
— https://github.com/imanpalsingh/pg-faker
Tool Google Differential Privacy
— Apache 2.0 license C++, by Google (not officially supported)
— https://github.com/google/differential-privacy
Tool pgsynthdata
— MIT license, Python, by Institute for Software, OST Rapperswil
— https://gitlab.com/geometalab/pgsynthdata
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PostgreSQL internal statistics

SELECT reltuples, relpages, relallvisible
FROM pg_class WHERE relname = 'flights’;
reltuples | relpages | relallvisible

(1 row) most_common_values

single-column
statistics

SELECT most_common_wvals AS mcv,

.. e . .
left{most_common_fregs::text,68) || "..." AS mcf avg_ width
FROM pg_stats
WHERE tablename = "flights' AND attname = 'aircraft_code' \ gx PostgreSQL statistic
Nl —
mcv | {CN1,CR2,5U8,321,763,733,319,773} multivariate mev lists
mcf | {6.2783,0.27473333,6.25816667,08.659233334,0.038533334,0.0370

extended statistics

AS histogram_bounds functional

SELECT left(histogram_bounds::text,68) || ...
dependencies

FROM pg_stats s
WHERE s.tablename = 'boarding_passes’ AND s.attname = 'seat_no’;
histogram_bounds
{16B,16D,16D,16F,11B,11C,11H,12H, 138,148 ,14H,15H, 16D, 16D, 16H. . .

(1 row)
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What is pgsynthdata? o

e CLI tool for PostgreSQL, which creates
synthetic data

* Mathematic Model taken from | T
PostgreSQL internal statistics — //

e Little configuration needed Byl it mode
(configuration by comments, e.g. flrew
NAME_GENERATOR) /”/ —

* Written in Python it Synthetic data

* MIT Open Source License
* Maintainer: Institute for Software OST

Source: Practical Synthetic Data Generation (2020), Emam, Mosquera &
Hoptroff, O'Reilly

Synthetic Data Generation with PostgreSQL | Stefan Keller | FH OST 23.03.2023 29



How does pgsynthdata work?

) .
WO r kfl OW o ( show generate ) ( analyze A
* show source db structure create destination db compare and validate ’Q
check generator selection k\m'ith synthetic data source to destination

id name salary., kids ages location dob

[PK] |n(eg6 text '4 real ’ smallml[], point ’ date s
1001 Peter Pan 5443 (257) (27.9455.. 198312:24
1002 Nora Niemand 6543 [null] (40.9242.. 1992-05-12
1003 Max Muster 3799 (16) (65.4916.. 1957-07-05

O

T
I
!
|
1
1
|
! user-friendly

: control

|

statistical data & same structure,

source database structure synthetic data generated

database pgsynthdata database

I easily expandable
: & interchangeable

|
|
|
e a e |
1 |
| data | !
| generators | I
----------- 1
1
id name salary,, kids ages location., dob
{PK]mleg‘ text 4 real ’ smalhm[]’ point '4 date 4
1001 Paulina Michel 4223 {6,84) (361,797) 1964-05-26
1002 Thomas Frick 5324 {4) (696,524) 1976-12-30
Synthetic Data Generation with Post; 1003 Mikolous Forst..| 4537 (i (32448) | 19760818 23.03.2023 30




pgsynthdata: Characteristics o

* Able to generate synthetic data from various PostgreSQL
databases and with generators for a wide range of data types

* Maintainable and extensible with a plugin system and own
generators (to be programmed in Python)

» Suitable at least for benchmarking
* Inshort:

— Easy-to-use, low config
— Easy-to-extend
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pgsynthdata: Outlook

e Possible extensions:

1.

o vk wn

Generic faker for all base data types

Support for composite primary keys

Support for self-referencing foreign keys

Spatial data types Point, LineString, Polygon

Make it suitable for ML functionality (new training phase)
A bit under maintained

e Current developments spring semester 2023:
— Student project of André Von Aarburg about (4) Point and (5) ML
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pgsynthdata extended by GeoPointGAN

e Student project spring semester 2023 (ongoing)

 Goal: To implement the paper by

— Cunningham, Klemmer, Wen & Ferhatosmanoglu (2022).
GeoPointGAN: Synthetic Spatial Data with Local Label Differential
Privacy

— a generative model for geographic point coordinates with a privacy
mechanism

e ..andtointegrate it in pgynthdata
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GeoPointGAN: Visualization

GeoPointGAN generated and privatized data: 311 caller locations in New York.
(Source: Cunningham et al. (2022). GeoPointGAN...)

New York - 311 Calls
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GeoPointGAN: Processing workflow

GeoPointGAN pipeline including privacy mechanism.
(Source: Cunningham et al. (2022). GeoPointGAN...)
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Discussion

These slides CC-BY-SA license
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